نظریه طیفی و جبرهای b*

پایان نامه
  • وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت معلم تهران
  • نویسنده سیدجمال رویین
  • استاد راهنما
  • تعداد صفحات: ۱۵ صفحه ی اول
  • سال انتشار 1368
چکیده

چکیده ندارد.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

جبرهای طیفی

این پایان نامه در سه فصل تنظیم شده است: فصل اول شامل سه بخش می باشد که تعاریف و قضایای مورد نیاز فصول بعدی آورده شده است . فصل دوم شامل دو بخش است ،بخش اول ابتدا به اثبات قضیه گلفاند-مازور پرداخته و سپس تعریف نیم نرم طیفی ارائه شده است. در بخش دوم با قضیه ای که وجود نیم نرم جبری را در جبرهای جابجایی ثابت میکند ، شروع کرده و سپس به بیان مفاهیم تبدیل گلفاند، همریختی گلفاند، توپولوژی گلفاند، و فضا...

15 صفحه اول

جبرهای فیستر با برگردان

در این مقاله به مرور فرم‌های دوخطی فیستر روی میدان‌ها و برگردان‌های فیستر روی جبرهای ساده‌ٔ مرکزی می‌پردازیم. همچنین به بیان حدس‌های مهم در این راستا، تلاش‌های انجام شده برای اثبات آن‌ها و نیز مسائل باز باقیمانده در مشخصه‌ٔ مخالف دو خواهیم پرداخت. درنهایت، تلاش‌های انجام شده برای تعمیم این حدس‌ها به مشخصه‌ٔ دو و تفاوت‌های نتایج به دست آمده در این مشخصه با سایر مشخصه‌ها نیز مرور می‌شوند.

متن کامل

مباحثی در b-جبرهای متناهی

در این رساله ثابت شده که کلاسqs-جبرها،bci-جبرهایp-نیم ساده وbp-جبرهامعادلند و دو زیرمجموعه به نام های (a(x و(b(x از یک bm-جبر x معرفی می کنیم و ثابت می کنیم(a(x یک زیرکاکسترجبر ازx است و داریم|(a(x)|<|b(x| . در ادامه bm-جبرقوی معرفی شده ونشان داده ایم هر bm-جبر از مرتبه فرد یک bm-جبرقوی است. سپس b-جبرهای حقیقی را معرفی کرده و تعدادی از آنها را پیدا کرده ایم و سرانجام به طبقه بندی مرتبه ی کمتر ...

عملگرهای کراندار طیفی روی *c-جبرهای ساده

عملگرهای کراندار طیفی روی *c-جبرهای ساده و جبرهای فون نویمان و *c-جبرهای ساده با رتبه حقیقی صفر بروریختی جردن می باشد.

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت معلم تهران

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023